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1. INTRODUCTION

This report presents the theoretical background and computer
programs for the analysis techniques that were used in evaluating data
obtained in the electromagnetic pulse (EMP) testing of military
communication and weapons systems under the PREMPT program.l

The data presented are initially obtained as a voltage-versus-time
trace photographed on Polaroid film. This trace is then digitized and a
time series of digital values is produced. The data are then processed
in a digital computer. The various techniques employed in reducing and
transforming the data are grouped under the generic title "signal
analysis." Section 2 of this report gives a detailed description of all
the algorithms; also, it contains complete instructions on how to use
the signal-analysis progranm.

Another technique used in the data-reduction process is to
represent the EMP waveform by a set of parametrized functions. This
technique involves a least-squares fitting procedure which is discussed
in section 3. Also, section 3 contains complete instructions on the use
of a least-squares fitting program.

This report is not intended to be exhaustive on the subject of
signal analysis but rather to present to the EMP community a basic
software package that will: (1) accomplish most of the data reduction
for EMP work and (2) be easily modified to include any additional
techniques.

2. SIGNAL ANALYSIS

This section presents the theoretical background and computer
implementation of a number of techniques for reducing and transforming
digital time series produced in EMP tests under the PREMPT program. A
complete program listing annotated with comments is given in this
section. Several versions of this program have been implemented on both
the IBM 370-195 and CDC 6500 computers. All of the programming was done
in FORTRAN. Some of the subroutines have been coded in assembly
language for the NOVA minicomputer but are not reported here, 2

i lrhe PREMPT program 1is a joint NMCSSC/DNA effort to determine the
response of DCS to electromagnetic pulses generated by a high-altitude
\nuclear burst.

| 2purther details are presented in "The Interactive Digitization and
|Editing System (IDES)" by Dr. Thomas A. Tumolillo, USA Harry Diamond
Laboratories, Adelphi, MD 20783, (Aug 1973).




2.1 Data Preprocessing

Under the generic title "Data Preprocessing" is included the many
minute details that are necessary to prepare the raw input data as
obtained from a digitization of the waveform, so that it is suitable for
transformation to the frequency domain.

The following sections discuss the method of referencing the trace
to the scope graticule, scaling the data, time ordering, bit reversal,
and a few of the simpler interpolation schemes. The software for two of
the simpler interpolators, the 1linear Lagrange, and the linear least
squares are presented. Higher order interpolators have been used
occasionally in the PREMPT program, but are not included here because
the simpler methods usually work. Simililarly, no techniques for time
tying of digital records are given. Only the software are presented for
the most commonly used grid and tablet referencing schemes, even though
some of the more complicated procedures are discussed.

2.1.1 Referencing the Trace to Graticule and Digitization Tablet

One important function of the data reduction is the determination
of the rotation angle of the scope graticule with respect to the
digitization tablet, the zero point (origin) of the graticule, and the
scale factors for the X and Y axes in the graticule (or grid) coordinate
system. There are many possible schemes that can be used to determine
these factors; the most general method will be discussed in this
section. The software exists for the general procedure as well as for
the simpler specific case implemented in this signal analysis package.

For simplicity, but with no loss of generality, let the grid
points be symmetrical about the origin of the grid coordinate system
(fig. 1); call this origin (XO,Y ). In the grid coordinate system the
measure grid points are designated by the arrays XG(I) and YG(I). In
the tablet coordinate system the measured grid points are designated by
the arrays XT(I) and YT(I). The coordinate systems are shown in
figure 1.

The transformation equation between the two systems is

3 [ o (1)
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It is convenient to shift the origin of the tablet coordinate system to
the point (XO,YC’; thus,

(=Y

T G

= (4)

¥ = Y lsino COS?’ 4
i3 (o]

X - YO ‘cos; —sinO) X

3\

G

For a specific set of points in the grid system, the above
transformation can be linearized. Take the line defined by YG = 0; then
we have

Xé = cos§ XG' YG =0 . (5)

Let @ = cosB, then X2 = aX.. The best value of 6 can be estimated from
the measured points along the grid X axis by using a least-squares
technique. Let

< =% [XT(I) - a XG(I)1? ; (6)
I

minimizing %4 with respect to a, we have
2_XT(I)*XG(I)
a(x‘) = 0 =g = Ccosf = I“ (7)
o & D XG(I)*XG (1)
5

fmuaf:nmans that we only sum over those points on the grid X axis,

We cguld now suitably define other straight 1lines on subsets of the
measured grid points and get further estimates of 8. It is more
convenient to use a nonlinear least-squares technique, and extract the
best value of 6, by using all the points at once.

10




. XT(I)
Let Z2(I) = 7
YT(I)

‘c;sw -sinﬂ) XG(I)

>
:('I) ’ (9)
lsln ":S"‘ YG(I)
and
N
> i
> |z - #¢(6,1) ] (10)
I=1
We minimize x“ with resnect to 8 by requiring 3(x“)/39 = 0; thus,
we have

*
i

-y [Ei'—l)“- (Z(1) —%$(8,I) + (Z(D)

10
I=1
A 1)
- 37(e,1)) £ (8,1) 0. 11
Here, ¢ is the adjoint of 9.
Assume now that WE nave iefined An l'.‘l(:r(lf'l_\it: process for evaluating
¥ }

andd, at the k  iteration, we assume that ¢ is given by

> -4 k ’,‘ka, K
(8,1) 0", 1) + ———.

)

K k+1 k

) = 8 - 8 ] 2

By substituting equation (12) into equation (l1), a recursion relation
is obtained for It an be shown after a slight algebraic
manipulation that

K+1 } . k k

11
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Figure 2. Measured grid points.
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11
3T (XT(I)*XT(I) + YT(I)*YT(I))

XS =11=1 S (16)
1L
N D XG(I)*XG(I)
I=1
Similarly, from the points on the YG axis (I = 12, 20), we have
20
3 (XT(I)*XT(I) + YT(I)*YT(I))
Ys = | I=12 (17)
20
) 2. YG(I)*YG(I)
N I=12

A complete grid measurement is rarely carried out as a routine
operation in the reduction of EMP data. Occasionally, it will be done
to test the linearity of the system. The most common method is to
measure two points on each axis and calculate all quantities from these
numbers., The following equations were implemented in the signal
analysis package. The routine calculates the grid rotation angle, the
scale factor, and the origin point from two measured points on both the
X and Y grid axes. 1Initially, the program reads in the coordinates of
the two points measured on the X axis--X1 and X2--and on the Y axis--Yl
and Y2. Then the four grid points are read in the same order that the
coordinate locations were read in. The four grid points are stored in
the arravs XT(I), YT(I), I = 1,4. The origin of the grid (X0, YO) Iis
given by

X0 = |X2*XT(1)-X1*XT(2)| /|X1-X2| ,

YO = |Y2*YT(3)-Y1*YT(4)| /|Y1-Y2| . (18)

The scale factors XS and YS are given bi

XS =V(XT(2)=XT(1))**2 + (YT(2)-YT(1l))**2 /(X2-X1) ,

YS =V (XT(4)-XT(3))**2 + (YT(4)=-YT(3))**2 / (Y2-Y1) (19)

14




The rotation angle is determined by

B YT (2)-YT(1) _ XT(4)-XT(3)
N (XT(Z)-XT(I) YT(4)-YT(3)) '
CT = cos(B8) = 1./Vl+tan(@)**2 ,
ST = sin(8) = cos(8)*tan(0) 2 (29)

Then the subroutine reads scale factors T (nanosecond/grid division) and
V (volts/grid division), then recomputes the scale factors as

T+T/XS, V»V/XS , (21)

which have units nanoseconds/tablet counts and volts/tablet counts.
Then the (Xx,y) coordinates of the trace are transformed as,

X(I) + (CT*(X(I)=-X0) + ST*(Y(I)-YO)=XZ)*T ,

Y(I) < (=ST* (X (I)-X0) + CT*(Y(I)-YO)-YZ)*V , (22)
where (X%, YZ) are the rotated coordinates of the "zero point of the
trace," that is, the point on the trace at which the signal starts,

X4 + CT* (X2-X0) + ST*(YZ-YO)

YZ + =ST* (XZ-X0) + CT*(YZ-YO) (23)

2.1.2 Time Ordering, Bit Reversal, and Interpolation Schemes

Time ordering of the array 1is a necessary procedure in order to
remove errors introduced in the digitization process. Occasionally,
there will be errors in the grid measurements that cause portions of the
trace to fold back in the time sense after it is rotated. Similarly,
inaccurate movement of the digitization operator's hand may also cause a
few points to be folded back in the time sense. In some cases the
digitization hardware will allow consecutive digital points to have the
same time value. If these measurement ambiguities are not removed, they
will cause considerable error in the high-frequency part of the
transforms. This correction of the data is handled in subroutine CST
OUT. This routine casts out those points in the arrav that are folded

15




back-~that is, if XF is the input time array and XF(K)<XF(I) for K = I +
1, I + 2,... then SF(K) is deleted from the array. Similarly, if XF (K)
= XF(I) for some set of K then the routine averages the amplitude YF (K)
to create a single value at that value XF(I).

Bit reversal of the array refers to a specific reordering of the
elements of a digital time series prior to 1its entering the FFT
subroutine. It is done so that after transformation the frequency
domain arrays are in ascending order of the frequency value. The term
bit reversal arises from representing the index of an array I in
base-two notation. For example, suppose we have the 65th element of a

1024 element array, then 65lo = 00010000012. The reverse of the number

is lOOOOOlOOO2 = 52010. To bit reverse, we swap the elements 65 and 520

of the original array.

In subroutine LNYQ, the Lagrangian methods for interpolation are
used. A brief description of Lagrange interpolation is given here.

It is generally assumed that the function, £, interpolated here
behaves like a polynomial; thus, in order to calculate f approximately
at a point x, we find a polynomial approximation g for f good in the
neighborhood of x. Lagrange showed that there is a unique polynomial of
degree n having n + 1 values £, at n + 1 distinct points X, o i=
0,...n. That polynomial is gn,

DN
£

n
g, (x) =‘Z £(x;) H (x - xj)/(xi - xj) . (:
=0

j=o
j#i

For the software presented in this package, n is restricted to the value
1. Thus,

f(x )-f£(fx ) X E(xy)-x,£f(x.)
1 0 -1
g (x) = e X + SN
l 1% 1 0

Cl*X + C2 . 25)

In the program the function f is called YF(I), xX. is replaced by the
time array XF(I), and the interpolated values are put into the real part
of the complex array YNYQA (K)

16




REAL [YNYOQA(K)] = Cl.Xx + C2,

L o YE(D)-YR(I-1) o _ XF(I)*YF(I-1)-XF(I-1)*YF(l) o
— ’ Ce = o \ £0)

XF (I)-XF(I-1) XF (I)-XF(I-1)

A

In subroutine NYQST, a linear polynomial is fitted to a set of
points in the arrays YF(I), XF(I), I = LB,...,LT. After determining the
polynomial, the program evaluates it at the predetermined interpolation
point.

The theory behind the least squares, polynomial fitting programs

is straightforward. We need to minimize v»“ with respect to the C(J)
where
LT M
° = o [YF(I) =) CWI)*XF(I)**J]? . (27)
I=LB J=(
setting Six7) ) J = 0,...,M vields
S o (7) . Moy
B = A-C , g

. ! th .
where the (K,L) element of the matrix A is

A(K,L) = ) XF(D)**(K + L - 2), K, L = 1,...,M, (29
I=LB

th .
the K element of the vector B is

LT
B(K) = > YF(I)*(XF(I)**(K = 1)) K= 1,...,M,

th . i tt
and the K element of the vector C is just the X E polvnomial
coefficient. Upon inversion we find the solution for C

A - B (31

N




Both of the interpolator subroutines take due account of the end
points of the arrays and minimize the number of calculations when more
than one interpolated point falls between the same time values.

2.2 Digital Filtering

This section briefly reviews the theory of digital filters.
Frequently in EMP work, the signal is contaminated by high-frequency
noise arising both from the nature of the measurements and the
digitization process which reduces the continuous signal to a digital
record. This high-frequency component can generally be eliminated by
passing the digital record through a low-pass digital filter. Another
useful application of low-pass filters 1is 1in reducing the number of
digital values needed to accurately calculate the Fourier transform of a
waveform at low frequencies. For example, if there 1is a signal with
frequency content up to 250 MHz, the Nyquist criterion is satisfied by
sampling the signal every 2.0 nsec. If the signal has a 2-usec
duration, then 1000 numbers must be stored for the Fourier transform
routine. However, if most of the significant frequency conten%t is
contained in a frequency band up to say 50 MHz, then after filtering,
only 200 numbers must be stored to adequately represent the signal and
obtain the Fourier transform without worrying about foldover effects.
Bandpass and high-pass digital filters have application in EMP work when
one is interested in studving only a certain region of the frequency
spectrum so that correlations between equipment upset and damage and the
induced signal can be determined.

2.2.1 Theory of Digital Filtering and Z Transforms

In EMP work, there is generally (after interpolation or as a
result of the digitization process) a sequence of numbers u(k), k=0,...N
that must pass through a linear discrete system (generally a difference
equation) in order to 1limit, 1in some manner, the frequency content of
the signal. The output of the linear system is denoted here by y(k),
k=0,...,N. By a linear discrete system 1is meant a syvstem in which the
output v (k) is expressed as a linear combination of inputs and past
outputs; thus,

n m
v(k) + 3. ali)y(k-j) = b(2)u(k-2) , (32)
j=1 2=0

and v(k), u(k) = 0, k < 0.

18




The 2 transform is used to simplify the analysis and synthesis of
the digital filter represented by equation (32)--for example, generate
the set of constants a(j) and b(%).

The Z transform of a sequence of numbers f(k), k=0,...N f(k) = O,
k < 0 is defined by

e =}
_k .
Z[f(k)) = F(z) = 3 £z = , (33)
k=0
where z is an arbitrary complex number.
The Z transform of the input-output signals are related to one
another by

Y(z}) = H(z) u(z) , (34)

where U(z) and Y(z) denote the 2 transforms of the input and output
signals respectively, and H(z) is the syvstem transfer function, and is
given by

m n .
H(z) = ) b(Q)z’“/(l + 3 a(])z-J) (35)

£=0 j=1

. . : . 5 -k
Proof: Multiply each side of equation (32) by z and sum over all k.

] v o _ m X _
P oym+ ¥ aG) Yyk-nz = ¥ b)) Suk-nzF L 6
k=0 j=1 k=0 =0 k=0

Using the properties of the 2 transform, this can be rewritten as

n . m
Y (z) + 3 a(ilz ) ¥(z2) = 3 bz U(z) ; 3
j=1 =0




n . m )
Y(z) |1+ 5 az | = |3 bz |uta) | .
= 2=0

Thus, equation (35) follows and may be rewritten as

r n
H(z) = bJT (z-z.) / Il (z—pi) . (39)
i=1 1= |

Here, z. and p. are called the zeros and poles of the system transfer
function H(z).

One of the most important properties of the transfer function is
the fact that the location of the zeros and poles has an enormous effect
on how the system transmits different types of inputs. Thus, a system
can be synthesized that will pass some inputs and reject others by a
proper selection of the zeros and poles.

Assume the application of a sinusoidal input u(k) = sin(kwT) k=0,
l, 2,... to our systems. Then the resultant steady-state response,
v(k), is given by

sin(kwT+8) . (4

y (k) = \H(ciw‘)

Here, the sinusoidal responsc of the svstem 1is obtained by evaluating

the system transfer function H(z) at z=e » where w 1is the radian

frequency of the input sinusoid and T is the underlying sampling period.
: iw] . iwT iwThy| i

is the phase angle of H(elwz)—-that is, H(e v ) = H(e ) e . To

prove equation (40) let u(k) = sin(kwT) k = 0, 1, 2, ...; then, U(z) is
given bv

zsinwT 1
ul(z) = : - e

1w‘) -iw
(Z—(’E (Z—G )




The Z transform of the svstem response 1is given by,

H(z)zsinw]

(z—eIWL]‘z-e-lw;)

Y(z) =

Since only stable systems are considered, all the poles of H(z)
must be inside the unit circle. Therefore, none of the poles of H(z) is

iwl -iw . . . . .
at e ore ™. a partial fraction expansion of equation (42) yields

Y(z) = az 6 bz + terms due to poles of H(z),
o (0ooi¥T)  [poo-i¥T)
z-e z-e
where
iwT) . ~-iw]
a=tle™)/2i and b = -ule™™) /21 .
. iwT -iw L i i
Noting that H(e ) = H(e J and writing H(o v ) = Hel , we find that
i@ =
_M ze —-2e o ) e
Y(z) = 5 iw‘) { —iwT terms due to poles of H(z) . (44
z-e z—-e )

Taking the inverse Z transform of equation (44) we obtain

i [ i (kwT+8) —i(kwA+‘)]
— le - e

vik) = 33 + transient response 4
- generated by poles
of H(z);
or,
y(k) = M sin(kwT+d) + y (k) . (4

transient




In the steady-state y transient (k) - 0 as k becomes large. Thus

4

]

¥ (k) |H(eiw‘:) sin(kwl+8) . (47)

W ‘ .

The quantity M=lH(el 1)‘ is called the system gain factor. To
filter out a given sinusoid, pick a system-'so that MV0; or, to amplify a
given sinusoid, pick M>1.

As has been observed in equation (39), the transfer function is a
ratio of polynomials in the variable z. Therefore, the system gain
factor that is equal to the magnitude of the transfer function evaluated
at z=exp(iwT) mav alwavs be expressed as a ratio of polynomials in the
variables cos(wT) and sin{(wT). Thus, different filters can be
svnthesized by investigating ratios of trigonometric functions. For
example, a low-pass filter with half-power point w, has the following
squared gain factor,

IH(eiw'f)!‘ B 1

By a considerable amount of algebraic manipulation equation (48) can be
written as

tanzn(wlT/Z)(l+z)2n o

lH(Z)I‘ = [

tanzn(wl?/2) + (‘l)n] Bz—p{)(Z-P?)- .(z—szl]

where z = exp(iwl), and the 2n poles p; are given by

1 - tan‘(w“ ’2) +./-1 2tan|w 3/2\5in~.
1 N 1 / i

' (5

i - l - 2tan<w] /?) wos‘i B tan<(w1‘/2) r
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where,

8. = (i-1) n/2, n odd

(2i-1) n/2, n even .
It can be shown that of the 2n poles, Py exactly n lie inside the
unit circle and n outside. Let Pis DyrewssD denote the n poles inside

the wunit circle. The transfer function that has the desired
squared-gain factor is given by

b(l+z)n r 51)

H(z) (z—pl)(z-pl\ ...(Z—Pn)

where b is chosen so that the steady-state, unit-step response has
magnitude one, H(l)=1; thus,

N (1_pl)(1-pp)...(l-pn] . (52)
2n

The remaining poles Priy? pn+2,...,p,n associated with tH(z)J“can be
shown to arise from the process of detérmining the squared-gain factor.

From the foregoing, a well-defined procedure exists for
synthesizing a low-pass filter. It can be summarized in the following
steps:

(a) Petermine the half-pcewer point Wy

(b) Determine the value n--using equation (17)--by specifying the

gain at frequercy W

(c) Find the n rocts P giver by equaticn (49) which

satisfy [[i[< 1, and

(d) Determine the difference equaticn which has the transfer
function given by equatiocns (51) and (52).

A squared-gain factor that corresponds to that of a high-pass
filter is given by




I

| in)l 1 {53)
Hle on
cot” (wl/2)

1 +
cotzn(w?T/Z)

Here, the half-power point is denoted by w_. Formulas analagous to
equations (50) and (51) may be derived Theé, it the poles and zeros of
a low-pass filter with half-power point (n/i—wz) are rotated through
T radians in the complex plane, the pole-zero pattern of a high-pass
filter is obtained with half-power point w_ and the same gain-factor
falloff outside its passband is obtained. Thus, if we have H(z) for the
low-pass filter given by

n
H(z) = b(1+z)\"/ 7 [z-p.) , (54)
z ( Z) i ( Dl)

then the high-pass filter is given by H' (z)

n
T (z+pi) - (55)

H' (z) = b'(z—l)n/
i=1l

2.2.2 Examples of Filtering EMP Data

To 1illustrate the implementation of the algorithms described in
section 1, a typical EMP waveform was selected from the vast amount of
data collected at the Polk City AUTOVON EMP tests and processed. Figure
4 plots the digitized waveform after it has been digitized, time
ordered, and interpolated at 1l.63-nsec intervals using a Lagrange
interpolator.

Figure 5 plots the power spectrum after passing the digital record
through a fast Fourier transform routine. All the power is contained in
two peaks at 13.2 and 24.0 MHz. Several filters were then synthesized
and the digital record passed through filters before processing it
through the fast Fourier transform routines. Table I 1lists the
half-power points, w.,, the gain at the higher frequency w, used to
determine n, and the filter coefficients af(j), 3j=1,...,n, b(j),
j=0...,n, which were calculated for each synthesized filter. Figures 6
through 12 are plots of the power spectra obtained by using a fast
Fourier transform routine on the filtered-time series. The general
result is fairly evident from these plots--namely, that as the number of
poles 1s increased and consequently the gain rolloff at the half-power
point is increased, a sharper filtering is obtained.

Although it is not apparent from the plots of the power spectra
presented, there is much greater definition of the peaks in the power
spectrum relative to the noise background. The high-frequency noise was
reduced by a factor of 100.
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Figure 5.
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FREQUENCY (UNIT 1,198 MHz)

Plot of power spectrum obtained without filtering.
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PARAMETERS CALCULATED FOR EACH SYNTHESIZED FILTER

Pilter
No.

"

Sampling
Interval T n
(usec)

a(j),i=1,...,n

b(3),3=1,...n+1

TABLE I.
Half-power
Ppedat ®, :‘i? :-
(Miz) 2 1
20 0.4
20 0.2
20 0.1
20 0.07°
20 0.0S
18 0.2
178 0.05

25

25

25

25

25

25

25

1.63 1
1.63 4
1.63 5
1.63 6
B.52 6
1.63 3
1.63 S

-0.8135657E00

=0.3465070E 01
0.4533676E 01
-0.2652045E 01
0.5848047E 00

-0.4337327E 01
0.7563597E 01
-0.6625226E 01
‘0.2913780E 01
-0.5145599E 00

-0.5208673E 01
0.1135041E 02
=0.1324103E 02
0.8718896E Ol
-0.3071778E 01
0.4523243E 00

~0.2848268E 01
0.384S003E 01
~-0.2959958E Ol
0.1351626E 01
-0.3426920E 00
0.3745000E-01

=0.2631725E 0}
0.2328194E 01
0.6912119E 00

-0.4420094E 01
0.7844978E 01
=-0.6986225E 01
0.3120767E 01
-0.5592871E 00

+0.9321713E00
+0.9321713E00

0.8540331E-04
0.3416131E-03
0.5124197E-03
0.8540331E-04

0.8235322E-05
0.4117661E-04
0.8235322E-04
0.8235322E-04
0.4117661E-04
0.8235322e-05

0.7937438E-06
0.4762463E-05
0.1190616E-04
0.1587487E-04
0.1190616E-04
0.4762463E-05
0.7937438E-06

0.1299385E-02
0.7796306E-02
0.1949077E-01
0.2598769E-01
0.1949077E-01
0.7796306E-02
0.1299385E-02

0.6571114E-03
0.1971334E-02
0.1971334B-02
0.6571114E-03

0.4385640E-05
0.2192819E-04
0.4385639E-04
0.4385639E-04
0.2192819E-04
0.4385640E-05
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Figure 7. Plot of power spectrum

obtained after passing
the digital record
through filter No. 2
(table I).

Plot of power spectrum obtained

Figure 6.
after passing the digital
record through filter No. 1
(table I).
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Plot of power spectrum
btained after passing
the digital record
through filter No.
(table I).

Figure 9.
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P4 4

Figure 8. Plot of power spectrum obtained
after passing the digital
record through filter No. 3
(table I).
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Figure 12. Plot of power spectrum obtained after passing the digital
record through filter No. 7 (table I).

2.3 Transform Techniques

Three different popular transform techniques are discussed below.

2.3.1 PFast Fourier Transform

The fast Fourier transform is by far the method most preferred for
generating the Fourier transform of a digital-time series. A short
discussion of the method is given in this section.

F(w) of a function f£(t) is defined as

(=]

Flw) = ff(x:)e'i“"c at . (56)

X

If f£(t) is nonzero only over a finite time interval T, then it is a good
approximation to write the Fourier transform as a discrete sum,
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is Jjust the sample itself. Beside the obvious savings in computer
running time by using this successive reduction scheme, the transform
can also be done in place--that 1is, in each stage of reduction the

intermediate results are written over the original array. This
in-place reduction requires a rearrangement of the original array called
bit reversal (subroutine SRTFUR) . A complete rearrangement and

overwriting sequence for an eight-point sampled function is illustrated
in figure 13.

Figure 13. Rearrangement and overwriting sequence for an eight-point
sampled function.

Each arrow in the diagram means that the term at the origin of the arrow
must be added. A variable next to the arrow acts as a multiplier to the
additive term. Thus, at the first overwrltlnq, sequence f is replaced

by f0+w *f4 and f4 is replaced by £ +N“*f

Subroutine FFT will compute the transform of any array with 2" elements
as descriked above. The only restriction is that imposed by the finite
memory size of the computer being used. Several examples of the power
spectrum derived from the real and 1imaginary parts of the transform
generated by FFT are shown in figures 5 through 12,




2.3.2 Fast Walsh Transform

The previous section transforms the digital-time series to the
frequency domain by using a particular set of orthogonal
functions--namely sines and cosines. Another set of orthogonal
functions, which are used extensively in communications theory, are the
Walsh functions that are used primarily to represent logic signals
Their most appealing feature 1is that the digital Walsh transform

algorithm is about an order of magnitude faster than the Fourier
transform algorithm,

The Walsh functions are wal(k,8), sal(k,8), and cal(k,8),

wal(2k,9) = cal(k,9)

wal (2k-1,0) = sal(k,0)

They are defined on the time interval T, 8 is the normalized time 6=t/T,
and k is called the sequency. The sequency 1s equal to the average
number of zero crossings of the function per unit time. The functions
sal and cal are similar to the sine and cosine functions. The sequency
of the Walsh functions plays a similar role as the frequency for the
sinusoidal functions. One definition of the Walsh functions is through
a difference equation,

wal (2ktp, 8) = (=) /2 TP w"l[er(":%)] : (-lk+p“al[k'2(9‘ )] r (67)

EN

where

k:'O, l’ s:’.,.,.'
{k/2] is the largest integer less than or equal to k/2,
p=0o0or 1, and

(AN

O»’4>

B |~

(68)

A few of the Walsh functions are shown in figure 14.




Examples of Walsh functions for interval -%<6<) (dark areas

Figure 14.

imply +1, light areas imply -1).
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A signal f(t) may be expanded in a Walsh series

2]

£(t) = alo)wal(o,t) + 2 [ac(k)cal(k,t) + as(k)sal(k,t)] ,

k=1
/2
alo) = f(t)dt ,
-1/2
rT/?.
a_(x) = J £ (t)cal (k, &) dt .,
-1/2
T/2
a_(k) = J’ f(t)sal(k,t)dt . (69)
-T/2

Just as in a Fourier expansion, the sum of the squares of the
expansion coefficients give the sequency energy spectrum. The Walsh
power is

E(k) = a2 (k) + a] (k) . (70)

To evaluate the coefficients, a fast Walsh transform algorithm can
be derived that is similar to the fast Fourier technique. The main
difference is that the reduction cannot be done in place. The steps for
an eight-point-sampled function is shown in figure 15. The arrows have
the same meaning as in the overwriting sequence for the FFT. Thus, at
the first overwrite, fO is replaced by fo+fl. :

For the EMP data of figure 4, the Walsh power was calculated and
the results plotted in figure 16 The same figure plots the Walsh power
after filtering the data through filter No. 7, table I.

3/




X—Y—oX——Y X ——— Y

a(o)

agll)

Oc“)

agl2}

0.(2)

a4(3)

a.(3)

04(4)

Figure 15. Overwriting sequence for Walsh transform.

FILTERED
— NO FILTERING

60 | - + + 4 | —

%0 ' . { + ‘ - 4

40

WALSH POWER

20 30 ° 40 50 €0 ro
SEQUENCY

Figure 16. Walsh power for the time series of figure 4.
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2.3.3 Refined Spectral Densities and Autocorrelation Function

In EMP work, there is a great need for implementing numerical
algorithms for the processing and storage of digitized waveforms, which
are the main output of all EMP tests. This subsection describes one
algorithm to generate the power spectrum of a digital record from its
autocorrelation function. The theory presented below is illustrated by
several examples.

A procedure will now be defined for estimating the power spectrum of a
uniformly spaced, discrete time series of finite length.

If C(t) is the autocovariance function for a time waveform X(t),
then by definition

C(T) = lim

T/2
[ X{t)X(t+1)dt . (71)
Tee -T/2

=

The power spectrum P(w) of the time waveform is then given by

o

P(w) = 2 'f cos(wt) C(t)dt . (72)
0

Por a uniformly spaced discrete-time series of finite length,
denoted by X , X.,..., X_ compute the mean lagged products, C_, with lag
interval At= hAt, andAt Is the time interval between adjacent values of
the time series.

1 g=n-hr .
Co = = X X Xqthe? T=0r Leeewm, m < o (73)
g=o
Next, compute the "raw spectral density estimates" Vr.
q=m-1
Vr = Ate CO + 2 3;1 Cq cos q;n + Cm cos rm (74)

The frequency corresponding to r is r/2mAt.




We next calculate the refined spectral density estimates according
to

. (75)

U = 0.23V + 0.54 V_ + 0,23 V
x r- r r

1 +1

To illustrate the implementation of the algorithms given by
equations (73), (74), and (75), refer once again to figures 4 and 5.
Figure 4 plots the digitized waveform after it has been digitized, time
ordered, and interpolated at 1l.63-nsec intervals with a Lagrange
interpolator. Figure 5 plots the power spectrum after passing the
digital record through a fast Fourier transform routine. Most of the
power is contained in the two peaks at 13.2 and 24.0 MHz,

Figures 17 through 23 are plots of the mean lagged products and
spectral densities for different values of the lag interval, At. It is
seen that all of the frequency content of the power spectrum is
accurately calculated until the 1lag interval exceeds the Nyquist
sampling rate, A > t_ = 1/2f ; where £ is the largest expected
frequency content o¥ the record. Formgﬁese data, At = 20 nsec.
Figure 22 shows the power spectrum clearly broadened and thus fold-over
effects on the lower frequency peak. Since the autocorrelation function
is close to zero for times greater than 0.5 usec, the power spectrum can
be accurately calculated with a lag of 1.0 and a lesser number of mean
lagged products (fig. 23).
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Figure 18. Refined spectral density
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